Application of Ion Chromatography in Pharmaceutical and Drug Analysis

Dennis Jenke

Baxter Healthcare Corporation, Technology Resources, 25212 West Illinois Route 120, Round Lake, IL 60073

Abstract

Ion chromatography (IC) has developed and matured into an important analytical methodology in a number of diverse applications and industries, including pharmaceuticals. This manuscript provides a review of IC applications for the determinations of active and inactive ingredients, excipients, degradation products, and impurities relevant to pharmaceutical analyses and thus serves as a resource for investigators looking for insights into the use of the IC methodology in this field of application.

Introduction

Since its introduction in 1975 (1), ion chromatography (IC) has developed and matured into an important analytical methodology that is applied in a number of diverse applications and industries. The technique, a type of high-performance liquid chromatography (HPLC), has gained popularity in laboratories for determining inorganic anions and cations, organic acids, carbohydrates, sugar alcohols, and aminoglycosides in environmental, agricultural, clinical, pharmaceutical, metal plating, power generation, semiconductor fabrication, and industrial samples. IC is a complimentary technique to the more commonly employed reversed-phase and normal-phase HPLC and atomic spectroscopic [such as atomic absorption spectrometry (AAS) and inductively coupled plasma atomic spectroscopy (ICP-AS)] techniques in pharmaceutical analysis. Broadly defined, the term ion chromatography applies to any method that combines the processes of analyte separation, accomplished via differences in ion migration, and analyte detection, accomplished via any number of applicable means. More traditionally, IC involves separations performed with a column containing an ion exchange stationary phase and detection performed by a number of means including electrochemical (for example, conductivity, amperometry, coulometry) and spectroscopic (for example, direct and indirect UV absorption and mass spectrometry) methods. Several books and chapters on IC furnish a detailed review of IC principles and instruments (2,3,4). Presently, IC-based procedures are cited in several USP monographs (see Table I: all tables appear in the appendix.), and many more IC methods have been successfully developed and validated for pharmaceutical applications (Tables II–VI). Because the technique has matured to the point that it is

readily recognized and accepted as a standard method and that it can be readily and reproducibly implemented by appropriately trained technical staff members, one anticipates that as the technique gains greater acceptance and wider application the utilization of IC in USP procedures will increase. For example, IC methods coupling strong anion exchange separations with UV detection have been recently developed and adopted for the characterization of heparin for impurities whose presence in commercial products has been linked to adverse events.

This manuscript provides a review of IC applications for the determinations of active and inactive ingredients, excipients, degradation products, and impurities relevant to pharmaceutical analyses and thus serves as a resource for investigators looking for applications of the IC methodology in this field of application. This review is presented in a tabular format that highlights the major operational parameters of the IC methods utilized and summarizes the major findings summarized in the individual cited references.

Applications of IC in Pharmaceutical and Drug Analysis

As dictated by the nature of the analyte, IC has been applied to all aspects of the manufacturing and disposition of pharmaceutical products, including the characterization of drug substances and active ingredients, excipients and other "inert" product components, degradation products and/or impurities and process streams components. The following sample types are analyzed: starting raw materials, intermediates (including media and culture broths), pharmaceutical raw materials, diluents, formulated products, production equipment cleaning solutions, and waste streams. The method is especially valuable in the pharmaceutical industry for ionic analytes (in products containing non-ionic components) that have little or no native UV absorbance. However, the ability to couple the ion exchange separation with numerous detection strategies expands IC applications to instances were analyte-specific detection strategies can provide the required degree of sensitivity and/or specificity. Utilization of such strategies allows for IC applications to be implemented on appropriately configured HPLC systems. Additionally, ion exclusion separations expand the range of application of IC to nonionic analytes of significant pharmaceutical interest including alcohols and carbohydrates. The wide dynamic range of the methodology makes it applicable for the quantitation of trace contaminants as well as major product components.

Examples of the application of IC to pharmaceutical analysis have been considered previously (5) and are provided in Tables

^{*}Author to whom correspondence should be addressed: email dennis_jenke@baxter.com

II–V. While these Tables do not exhaustively capture the entire database of pharmaceutical applications of IC, they do provide relevant examples of the types of separation/detection strategies that are used in this field.

Method Validation

As IC is a liquid chromatographic method, guidelines for the validation of IC applications in the pharmaceutical industry are readily available (6–8) and most of the applications cited in this manuscript contain some degree of assay validation information. Comprehensive validation information, specifically with respect to the common validation parameters (e.g., accuracy, linearity, precision, specificity, sensitivity, and ruggedness), is summarized in Table VI for the various pharmaceutical applications of IC. Consistent with the nature of the application (trace analysis versus content/potency), the operating characteristics are similar to those that are routinely obtainable in more classical applications of liquid chromatography (e.g., HPLC).

IC is extensively employed in the environmental and food industries. As the requirements for quality in these disciplines are similar to those in the pharmaceutical industry, applications in these fields have been extensively validated, including the utilization of inter-laboratory collaborative assessments (9–16, 99–102).

References

- H. Small, T. Stevens, and W. Bauman. Novel ion exchange chromatographic method using conductimetric detection. *Anal. Chem.* 47: 1801 (1975).
- 2. J. Weiss. Ion Chromatography, Second Ed., VCH, Germany, 1995
- S. Karmarkar. "Ion Chromatography in Environmental Analysis", In The Encyclopedia of Environmental Analysis and Remediation, R.A. Meyers, Ed., John Wiley and Sons, Inc., New York, NY, 1998, 2391–2404.
- 4. J. Fritz and D. Gjerde. *Ion Chromatography*, Fourth Ed., Wiley-VCH, Germany, 2009.
- S. Karmarker and D. Jenke. Applications of ion chromatography to pharmaceutical and drug analysis. *Pharmacopeial Forum*, **29(6)**: 2082–2108 (2003).
 ICH Guideline Q2A, Validation of Analytical Procedures: Definition and
- ICH Guideline Q2A, Validation of Analytical Procedures: Definition and Terminology (CPMP III/5626/94), Geneva, Switzerland, March 1995.
- ICH Guideline Q2B, Validation of Analytical Procedures, Methodology (CPMP/ICH/281/95), Geneva, Switzerland, November, 1996.
- <1225> Validation of Compendial Methods. The United States Pharmacopeia, 34, USP Convention, Rockville, MD. 2011, pp. 778–786.
- K.W. Edgell, J.E. Longbottom, and J.D. Pfaff. Determination of inorganic anions in water by ion chromatography: Collaborative study. *JAOAC*, 77: 1253–1263 (1994).
- L.M. Thienpont, J.E. Van Nuwenborg, H. Reinauer, and D. Stockl. Validation of candidate reference methods based on ion chromatography for determination of total sodium, potassium, calcium and magnesium in serum through comparison with flame atomic emission and absorption spectrometry. *Clinical Biochem.* 29: 501–508 (1996).
- M. Mulholland, K. McKinnon, and P.R. Haddad. Practical evaluation of ion chromatography methods developed by an expert system. *J. Chromatogr. A.* 739: 25–33 (1996).
- L.M. Thienpoint, J.E. Van Nuwenborg, and D. Stockl. Ion chromatography as a reference method for serum cations. J. Chromatogr. A. 789: 557–568 (1997).
- P.E. Jackson, J.S. Rohrer, and S. Gokhale. Interlaboratory validation of an ion chromatography method for the analysis of DBP anions in drinking water. *Proc. Water Quality Technol. Conf.* 1170–1176 (1999).
- L. Merino, U. Edberg, G. Fuchs, and P. Aman. Liquid chromatographic determination of residual nitrate/nitrate in foods: NMKL collaborative study. *JAOAC*. 83: 365–375 (2000).
- H.P. Wagner, B.V. Pepich, D.P. Hautman, and D.J. Munch. Performance evaluation of a method for the determination of bromate in drinking water by ion chromatography (EPA Method 317.0) and validation of EPA Method 324.0. *J. Chromatogr. A.* 884: 201–210 (2000).
- D.P. Hautman, D.J. Munch, C. Frebis, H.P. Wagner, and B.V. Pepich. Review of the methods of the US Environmental Protection Agency for bromate determination and validation of Method 317.0 for disinfection by-product anions and low-level bromate. J. Chromatogr. A. 920: 221–229 (2001).
- L. Bhattacharya. Ion Chromatography in biological and pharmaceutical drug analysis: USP perspectives. presented at the Intl. IC Symp., October 2, 2002, Baltimore.

- J.P. Kosonen. Determination of disodium clodronate in bulk material and pharmaceuticals by ion chromatography with post-column derivatization. J. Pharm. Biomed. Anal. 10: 881–887 (1992).
- 19. B. Kersten. Ion chromatography of polyhydroxy aliphatic amines of pharmaceutical interest. *Chromtographia*. **34:** 607–612 (1992).
- E.W. Tsai, D.P. Ip, and M.A. Brooks. Determination of alendronate in pharmaceutical dosage formulations by ion chromatography with conductivity detection. *J. Chromatogr.* 596: 217–224 (1992).
- J. Quitasol and L. Krastins. Analysis of pamidronate disodium in pharmaceutical dosage forms by ion chromatography. J. Chromatogr. A. 671: 273–279 (1994).
- E.W. Tsai, S.D. Chamberlin, R.J. Forsyth, C. Bell, D.P. Ip, and M.A. Brooks. Determination of biphosphonate drugs in pharmaceutical dosage formulations by ion chromatography with indirect UV detection. *J. Pharm. Biomed. Anal.* 12: 983–991 (1994).
- R. Ghanem, M.A. Bello, M. Callejon, and A. Guiraum. Determination of betablocker drugs in pharmaceutical preparations by non-suppressed ion chromatography. J. Pharm. Biomed. Anal. 15: 383–388 (1996).
- R. Thompson, N. Grinberg, H. Perpall, G. Bicker, and P. Tway. Separation of organophosphonates by ion chromatography with indirect photometric detection. *J. Liq. Chromatogr.* 17: 2511–2531 (1994).
- T. Okamoto, K. Takayama, M. Ikeda, and H. Nagashima. Simultaneous determination of alkali metal ions by ion chromatography using a grapitized carbon column. *Bunseki Kagaku.* 47: 389–395 (1998).
- Q. Chen, S. Mou, X. Hou, and Z. Ni. Simultaneous determination of caffeine, theobromine and theophylline in foods and pharmaceutical preparations by using ion chromatography. *Anal. Chim. Acta.* 371: 287–296 (1998).
- J.L. Perez and M.A. Bello. Determination of paracetamol in dosage forms by nonsuppressed ion chromatography. *Talanta*. 48: 1199–1202 (1999).
- X. Ding and S. Mou. Ion chromatographic analysis of tetracyclines using polymeric column and acidic eluent. *J. Chromatogr. A.* 897: 205–214 (2000).
 L. Wang, Ion chromatography studies of quaternary ammonium halide solutions
- L. Wang. Ion chromatography studies of quaternary ammonium halide solutions and the determination of pharmaceuticals. *J. Chromatogr. Sci.* 40: 326–330 (2002).
 M.Y. Croft and P.R. Haddad. Applications of non-suppressed ion chromatography in
- M.Y. Croft and P.R. Haddad. Applications of non-suppressed ion chromatography in pharmaceutical and clinical analysis. *High Perform. Liq. Chromatogr. Clin. Lab.* 5: 138–141 (1986).
- B.P. Downey and D.R. Jenke. Determination of oxalate in pharmaceutical matrices by indirect photometric chromatography. J. Chromatogr. Sci. 25: 519–524 (1987).
- M.J. Lesh, E.L. Wilkinson, M.R. Zolfaghari, and M.A. Schreiber. High performance liquid chromatographic analysis of lactic acid and lactic acid lactate in amrinone lactate formulations. *J. Liq. Chromatogr.* 16: 2415–2422 (1993).
- N. Hayase, S. Akutsu, S. Inagaki, and H. Hosokawa. Simultaneous determination of inorganic cations in cardioplegic solution by photometric ion chromatography—A comparison with autoanalyzer method. *Jpn. J. Hops. Pharm.* **19:** 99–105 (1993).
- L.A. Kaine, D.T. Heitkemper, D.S. Jackson, and K.A. Wolnik. Use of ion chromatography for the verification of drug authenticity. J. Chromatogr. A. 671: 303–308 (1994).
- A. Chalgeri and H.S.I. Tan. Indirect photometric detection for determination of citrate in pharmaceutical matrices by ion chromatography. J. Pharm. Biomed. Anal. 14: 835–844 (1996).
- P.L. Annable. Determination of alkyl sulfonic acids in pharmaceuticals by ion chromatography. J. Chromatogr. A. 724: 199–206 (1996).
- B.S. Lord and R.W. Stringham. Liquid chromatographic determination of organic acids used as pharmaceutical counterions. *Anal. Chem.* 68: 1067–1070 (1996).
- T. Okamoto, A. Isozaki, and H. Nagashima. Determination of chloride, bromide and sulfate in color additives by ion chromatography on ceramic carbon column. *Bunseki Kagaku*. 45: 865–871 (1996).
- D.R. Jenke. Quantitation of oxalate and citrate by ion chromatography with a buffered, strong acid eluent. J. Chromatogr. 437: 231–237 (1988).
- D.R. Jenke. Development and validation of an ion-exclusion chromatographic method for the quantitation of organic acids in complex pharmaceutical products. *J. Chromatogr. Sci.* 36: 179–186 (1998).
- X. Yang, P. Chen, L. Nie, and S. Yao. Determination by ion chromatography with series bulk acoustic wave detection of organic acids in a Chinese drug schisandrae fructus. *Anal. Sciences.* 14: 413–415 (1998).
- M.A. Bello and A.G. Gonzalez. Determination of phosphorous oxoanions in pharmaceuticals using non-suppressed ion chromatography. *Analusis*. 27: 97–100 (1999).
- Y. Kim, E. Koh, S. Park, S. Chang, S. Park, W. Na, and H. Kim. Determination of sulfite in oriential herbal medicines. *JAOAC* 83: 1149–1154 (2000).
- Q. Chen and J. Wang. Simultaneous determination of artificial sweeteners, preservatives, caffine, theobromine and theophylline in food and pharmaceutical preparations by ion chromatography. J. Chromatogr. A. 937: 57–64 (2001).
- W. Warnock, L. Nair, S. Sadain, D.R Jenke. Evaluation of an ion exclusion/direct conductivity method for quantitating acetic and lactic acids in pharmaceutical LVP base formulations. J. Liq. Chrom. & Rel. Technol. 25: 541–560 (2002).
- Q. Xu, C. Xu, W. Zhang, Y.P. Wang, L.T. Jin, H. Haraguchi, A. Itoh, and K. Tanaka. Simultaneous determination of silicic acid, Ca, Mg and Al in mineral water and composite tablets by ion chromatography. *Chromatographia*. 53: 81–84 (2001).
- H. Kim and M. Richardson. Determination of 5-hydroxymethylfurfural by ionexclusion chromatography with UV detection. J. Chromatogr. 593: 153–156 (1992).
- J. Carnevale and P.E. Jackson. Analysis of aluminum in pharmaceutical products by post-column derivatization ion chromatography. J. Chromatogr. A. 671: 115–120 (1994).
- J.B. Nair. Determination of trace levels of cyanamide in a novel potassium channel activator bulk drug by pulsed electrochemical detection. J. Chromatogr. A. 671: 367–374 (1994).

- J. Weiss, J. Statler, and A. Heckenberg. Suppressed ion chromatography and its application to pharmaceutical analysis. *S.T.P. Pharma Practices.* **4:** 372–378 (1994). 50
- W. Li, and T.M. Rossi. Determination of sulfamate and sulfate as degradation prod-51. ucts in an anti-epileptic drug using ion chromatography and indirect UV detection. J. Liq. Chromatogr. 18: 917–923 (1995).
 N.K. Jagota, J.B. Nair, and P.T. Kurtulik. Ion chromatography of methansulfonic acid in pharmaceuticals. J. Pharm. Biomed. Anal. 13: 1291–1295 (1995).
- 52.
- K. Chen, P. Chen, L. Nie, S. and Yao. Design of double cell quartz crystal detector 53. for ion chromatography and its applications to determination of organic acids in tra-ditional Chinese herb medicine. *J. Chromatogr. A.* **753:** 171–176 (1996).
- N.K. Jogata, A.J. Chetram, and J.B. Nair. Ion chromatography of amylamine and tert-54. butylamine in pharmaceuticals. J. Chromatogr. A. 739: 343-349 (1996)
- S.A. Everett, M.F. Dennis, K.B. Patel, P. Wardman, and M.R.L Stratford. High-perfor-55. mance ion chromatography applied to free-radical mechanisms in drug design. The problem of ion analysis at high ionic strengths. J. Chromatogr. A. 770: 273–279 (1997).
- 56. R.P. Kotinkaduwe and R.A. Kitscha. The determination of methansulfonic acid content of busulfan drug substance and busulfan (Myleran) tablets by ion chromatography. J. Pharm. Biomed. Anal. 21: 105–113 (1999)
- L. Yang, L. Liu, B.A. Olsen, and M.A. Nussbaum. The determination of oxalic acid, 57. oxamic acid and oxamide in a drug substance by ion exclusion chromatography. I. Biomed. Pharm. Anal. 22: 487–493 (2000).
- R.S.R. Robinett and W.K. Herber. Analysis of substrates and metabolites in fermen-58. tation broth by ion chromatography. J. Chromatogr. A. 671: 315-322 (1994).
- R.S.R. Robinett, H.A. George, and W.K. Herber. Determination of inorganic cations 59. in fermentation and cell culture media using cation-exchange liquid chromatography and conductivity detection. J. Chromatogr. A. 718: 319–327 (1995)
- P.R. Loconto and N. Hussain. Automated coupled ionexclusion-ion chromatog-60. raphy for the determination of trace anions in fermentation broth. J. Chromatogr. Sci. 33: 75-81 (1995)
- A. Weston. Ion chromatography in the pharmaceutical industry. *Am. Biotechnol. Lab.* **3:** 16, 30, 32, 33 (1998). 61.
- Y. Xie, L. Bao, and W. Wei. Double cell bulk acoustic wave sensor for ion chro-62. matographic study of the relation between magnesium and groth of organisms. Current Microbiol. 40: 101-104 (2000).
- P.N. Fernando, I.N. Egwu, and M.S. Hussain. Ion chromatographic determination of 63. trace hydroxylamine in waste streams generated by a pharmaceutical reaction process. J. Chromatogr. A. 956: 261-270 (2002).
- J.P. Waterworth. Validation of ion chromatographic methods for the trace analysis 64. of ions in pharmacopoeial grades of water. J. Chromatogr. A. 770: 99-104 (1997).
- 65. A.P. Micheel, C.Y. Ko, and H.Y. Guh. Ion chromatography method and validation for the determination of sulfate and sulfamate ions in topiramate drug substance and finished product. J. Chromatogr. A. **709:** 166–172 (1998).
- 66. I.D. Smith, P.D. Blackler, and D.G. Waters. Determination of total and ionic chloride and bromide in a cross-linked quaternary ammonium-substituted polymethacrylate by ion chromatography. Anal. Proceed. 30: 372-374 (1993)
- 67. J. Wu and W. Lu. Rapid determination of trace copper, manganese, and zinc in harmaceuticals by ion chromatography. Sepu. 12: 132-133 (1994).
- pharmaceuticals by ion chromatography. *Sepu.* 12, 132-135 (1997). S. Karmarkar, M. Koberda, J. Momani, D. Kotecki, and R. Garber. Validated ion 68. exclusion chromatographic method for citrate and acetate in medical fluid. Presented at the Intl. IC Symposium, San Diego, September 2003.
- S.A. Cassidy, C.W. Demarest, P.B. Wright, and J.B. Zimmerman. Development and 69. application of a universal method for quantitation of anionic constituents in active pharmaceutical ingredients during early development using suppressed ion chro-matography. *J. Pharm. Biomed. Anal.* **34(2):** 255–264 (2004). N.C. Megoulas and M.A. Koupparis. Ion-chromatographic determination of carbo-
- 70 cisteine in pharmaceuticals based on non-suppressed conductimetric detection. J. Chromatogr. A. **1026(1-2):** 167–174 (2004).
- 71. H. Liu, H. Wang, and V.B. Sunderland. An isocratic ion exchange HPLC method for the simultaneous determination of flucioxacillin and amoxicillin in a pharmaceutical formulation for injection. J. Pharm. Biomed. Anal. 37(2): 395-398 (2005).
- J. Ouyang, X. Gao, W.R. Baeyens, and J.R. Delanghe. Determination of ephedrine 72. and related compounds in pharmaceutical preparations by ion chromatography with direct conductivity detection. *Biomed. Chromatogr.* **19(4)**, 266–271 (2005).
- C. Pavitrapok and D.A. Williams. Determination of methenamine, methenamine 73. mandelate and methenamine hippurate in pharmaceutical preparations using ionexchange HPLC. J. Pharm. Biomed. Anal. 40(5): 1243-1248 (2006).
- S. Shen, J. Ouyang, W.R. Baeyens, J.R. Delanghe, and Y. Yang. Determination of B2-74. agonists by ion chromatography with direct conductivity detection. J. Pharm. Biomed. Anal. 38(1): 166–172 (2005).
- 75. X. Chen, M. Ye, H. Cui, F. Wu, Y. Zhu, and J.S. Fritz. Determination of glycerophosphjate and other anions in dentrifrices by ion chromatography. J. Chromatogr. A. 1118(1): 155–159 (2006).
- C. Fernandes, R.S. Leite, and F.M. Lancas. Rapid determination of bisphosphonates 76. by ion chromatography with indirect UV detection. J. Chromatogr. Sci. 45(5): 236-241 (2007).
- 77. H. Hagendorfer and W. Goessler. Separation of chromium (III) and chromium (VI) by ion chromatography and an inductively coupled plasma mass spectrometer as an element-selective detector. Talanta 76(3): 656-661 (2008)
- 78. T.K. Malongo, S. Patris, P. Macours, F. Cotton, J. Nsangu, and J. Kauffmann. Highly sensitive determination of iodide by ion chromatography with amperometric detec-tion at a silver-based carbon paste electrode. *Talanta* **76(3):** 540–547 (2008).
- M. Sahin, L. Ozcan, and Y. Sahin. Determination of ascorbic acid by polypyrrole 79 potentiometric detector in ion chromatography. Biosensors and Bioelectronics. 24: . 3492–3497 (2009)
- A.A. Krokidis, N.C. Megoulas, and M.A. Koupparis. EDTA determination in phar-80. maceutical formulations and canned foods based on ion chromatography with suppressed conductivity detection. Anal. Chim. Acta. 535(1-2): 57-63 (2005).

- 81 L.H. Wang. Ion chromatography studies of quaternary ammonium halide solutions and the determination of pharmaceuticals. J. Chromtaogr. Sci. 40(6): 326-330 (2002)
- 82.
- S.H. Wang, E. Raptis, J. Yeh. Ion chromatography for the determination of sulfate in STEALTH liposomes. *J. Chromatogr. A.* **1039(1-2):** 51–58 (2004).
 T. Bolanca, S. Cerjan-Stefanoic, M. Regeija, and D. Stanfel. Ion chromatographic method development for monitoring seawater quality used in the over-the-counter pharmaceutical industry. *J. Sep. Sci.* **28(13):** 1476–1484 (2005). 83.
- 84. S. Kamakar, M. Koberda, J. Momani, D. Kotecki, and R. Garber. Validated ionexclusion chromatographic method for citrate and acetate in medical fluids. . Chromatogr. A. 1039(1-2): 147-153 (2004).
- D. Jenke, S. Sadain, K. Nunez, and F. Byrne. Performance characteristics of an ion 85. chromatographic method for the quantitation of citrate and phosphate in pharmaceutical solutions. *J. Chromatogr. Sci.* **45**(1): 50–56 (2007). B.M. DeBorba, J.S. Rohrer, and L. Bhattachryya. Development and validation of an
- assay for citric acid/citrate and phosphate in pharmaceutical dosage forms using ion chromatography with suppressed conductivity detection. J. Pharm. Biomed. Anal. 36: 517-524 (2004)
- M.J. Rocheleau. Analytical methods for determination of counter-ions in pharma-87. ceutical salts. Current Pharm. Anal. 4(1): 25-32 (2008).
- 88 E. Kasier and J. Rohrer. Determination of residual trifluoroacetate in protein purification buffers and peptide preparations by ion chromatography. J. Chromatogr. A. 1039(1-2): 113-117 (2004)
- 89 K. Vinkovic and V. Drevenkar. Ion chromatography of azide in pharmaceutical protein samples with high chloride concentration using suppressed conductivity detection. J. Chromatogr. B. 864(1-2): 102–108 (2008). S.J. Prasanna, H.K. Sharma, K. Mukkanti, M. Sivakumaran, K.S.R.P. Kumar, and
- 90. V.J. Kumar. Validation of a sensitive ion chromatography method for determination of monoethylsulfate in Indinvar sulfate drug substance. J. Pharm. Biomed. Anal. 50(5): 1065-1069 (2009)
- N.H. Subramanian, P. Manigandan, R. Ganeshjeevan, G. Radhakrishnan, A. Wille, 91. and A. Steinbach. Trace-level aliphatic amines in cationic drugs. LC-GC Europe. 27-29 (2009).
- N.H. Subramanian, S. Thyagarajan, P. Manigandan, J.R.G. Parthasarathy, and G. Radhakrishnan. An improved ion chromatographic method for fast and sensitive 92. determination of N-methylpyrrolidine in cefepime hydrochloride. J. Chromatogr. Sci. 47(7): 549-552 (2009).
- N.H. Subramanain, V.R.S. Babu, and R.G. Jeevan, and G. Radhakrishnan. Matrix 93. elimination ion chromatography method for trace azide determination in irbesartan drug. J. Chromatogr. Sci. 47(7): 529-533 (2009).
- N.H. Subramanian, P. Manigandan, R.G. Jeevan, and G. Radhakrishnan. Ion chromatographic determination of residual phase transfer catalyst in active pharmaceutical ingredient. J. Chromatogr. Sci. 47(7): 540-544 (2009).
- R. Murugan and S.S. Narayanan. Determination of residual formic acid in 95 ceftazidime drug substances using ion chromatography by facile non-suppressed conductivity detection. Anal. Chem., (Indian J). 7(11): 807-811 (2008).
- P.N. Fernando, I.N. Egwu, and M.S. Hussain. Ion chromatographic determination of 96. trace hydroxylamine in waste streams generated by a pharmaceutical reaction process. J. Chromatogr. A. 956(1-2): 261-270 (2002).
- 97. W. Resto, D. Hernandez, R. Rey, H. Colon, and J. Zagas. Cleaning validation 2: Development and validation of an ion chromatographic method for the detection of traces of CIP-100 detergent. J. Pharm. Biomed. Anal. 44(1): 265-269 (2007)
- 98. Various Monographs (Volumes 2 and 3) and General Chapters (Volume 1) in The United States Pharmacopeia, 32, USP Convention, Rockville, MD. 2009
- B.M. De Borba and E.T. Urbansky. Validation of a U.S. EPA method for the ion 99 chromatographic determination of perchlorate in fertilizers using a polyvinyl alcohol gel resin. Am. Lab. 34(15): 14,16 (2002).
- 100. R. Michalski. Ion chromatopgraphy as a reference method for determination of inorganic ions in water and wastewater. Crit. Rev. Anal. Chem. 36(2): 107–127 (2006). D.J. Reisman, V. Sundaram, S.R. Al-Abed, R. Souhail, and D. Allen. Statistical
- 101. validation of sulfate quantification methods used for analysis of acid mine drainage. Talanta. 71(1): 303-311.
- P. Miskaki, E. Lytras, L. Kousouris, and P. Tzoumerkas. Data quality in water 102. analysis: validation of ion chromatographic method for the determination of routine ions in potable water. *Desalination*. **213(1-3):** 182–188 (2007).
- 103. Heparin Sodium. Interim Revision Announcement. Pharmacopeial Forum. 35(5): 1085-1089 (2009).
- 104. J.E. Turnbull. "Analytical and preparative strong anion-exchange HPLC of heparin sulfate and heparin saccharides". In Methods in Molecular Biology, Vol. 171: Proteglycan Protocols. R.V. lozzo, Ed. Humana Press, Totowa, NJ, 2001, pp. 141–147
- 105. M.L. Trehy, J.C. Reepmeyer, R.E. Kolinski, B.J. Westenberger, and L.F. Buhse. Analysis of heparin sodium by SAX/HPLC for contaminants and impurities. . Pharm. Biomed. Anal. **49(3):** 670–673 (2009).
- 106. D.A. Keire, M.L. Trehy, J.C. Reepmeyer, R.E. Kolinski, W. Ye, J. Dunn, B.J. Westenberger, and L.F. Buhse. Analysis of crdue heparin by 1H NMR, capillary electrophoresis, and strong-anion-exchange-HPLC for contamination by over sulfated chondrotin sulfate. J. Pharm. Biomed. Anal. 51(4): 921–926 (2010).
- 107. D.A. Keire, D.J. Mans, H. Ye, R.E. Kolinski, and L.F. Buhse. Assay of possible economically motivated additives or native impurities levels in heparin by 1H NMR, SAX-HPLC, and anticoagulation time approaches. J. Pharm. Biomed. Anal. 52(5): 656-664 (2010).

Manuscript received July 19, 2010 revision received November 23, 2010

Appendix: Tables I–VI

Table I. IC in USP monographs* Title Test Separation Detection⁺ Amikacin Column: Anion Exchanger, 8 µm, L47 packing, PAD Assay available as Dionex's CarboPac MA1; Eluent: 0.115 N NaOH Assay and limit of Column: Weak cation Exchanger, 3 to 15 µm, L53 packing, Bethanicol NS, CD chloride injection 2-hydroxypropyl trimethyl available as Dionex's CS14; Eluent: 20 mM methanesulfonic acid ammonium chloride Erythromycin assay Column: Cation Exchange, 5 to 10 µm, L47 packing, available as PAD Erythromycin ointment TSK IC SW cation from TosoHaas; Eluent: mixture of ACN, NaOH, and water Limit of 2-chloro-2-Column: Anion Exchange, 10 µm, L46 packing; Eluent: 0.8% NaOH Fludeoxyglucose PAD deoxy-D-Glucose F18 injection Fenoldopam Limit of iodide Column: Anion Exchange, packing not specified; Eluent: 2.8 mM NaHCO₃ + S, CD mesylate 2.2 mM Na₂CO₃ + 0.8 mM 4-cyanophenol + 2% acetonitrile Kanamycin sulfate Assav Column: Anion Exchange, 8 µm, L47 packing, PAD available as Dionex's CarboPac MA1; Eluent: 0.115 N NaOH eluent Mg-carbonate, citric Assay for citrate Ion Exchange separation. CD acid, and K-citrate for No further details since the assay is yet to be published. oral solution (proposed) Oil and water Assay for fluoride Column: Ion Exclusion, 7 to 11 µm, L17 packing; CD soluble vitamins Eluent: 10% (v/v) Ethanol + 2 mN H₂SO₄ with minerals oral solution Oil and water Assay for fluoride Column: Ion Exclusion, 7 to 11 µm, L17 packing; CD soluble vitamins Eluent: 10% (v/v) Ethanol + 2 mN H₂SO₄ with minerals tablets PEG3350 and Assay of sodium Column: Strong Cation Exchanger, about 10 µm, L22 packing; NS, CD and potassium Eluent: 1.9 mM HNO₃ eluent electrolyte oral solution Assay of chloride Column: Weak Anion Exchanger, about 10 µm, L23 packing; and sulfate Eluent: Mixture of borate, gluconate, glycerine, and acetonitrile Potassium Perchlorate Assay of perchlorate Column: Weak Anion Exchanger, about 10 µm, L23 packing; CD Eluent: 10 mM phthalic acid + 10% methanol, pH 4.5 Sodium fluoride Radiochemical Column: Ion Exclusion, 7 to 11 µm, L17 packing; Gamma ray F18 injection purity (Purity of N18F) Eluent: 3 mN H₂SO₄ detector in series with CD Streptomycin sulfate Assav Ion Exchange separation. PAD No further details since the assay is yet to be published. (proposed) Heparin Sodium[‡] Chromatographic Identity Column: strong anion-exchange resin, L61 packing (Dionex Ion Pac As-11). UV at 202 nm and Organic Impurities Eluent = Phosphate buffer gradient

* Information revised from reference 17.

⁺ Detection: PAD, pulsed amperometric; NS, CD, non-suppressed conductometric; CD, direct conductometric; S, CD, suppressed conductometric ⁺ See reference 103.

Table II A. Pharmaceutical Applications of Ion Chromatography, Active Ingredients									
Analyte	Column	Eluent	Detection	Other	Ref.				
Disodium clodronate tetrahydrate	Dionex IonPac AS7, 250 × 4 mm, 10 µm particles	40 mM HNO ₃ at 0.5 mL/min	UV at 300 nm after post-column derivatization with acidic iron (III)	Stability-indicating versus degradation products with some validation data provided	18				
1-(butylamino)- 1-deoxy-D-glucitol*	Dionex IonPac CS3, 250 × 4 mm, 10 µm particles	10 mM HCl with 0.01 mM DL-2,3-diaminopropionic acid, 2 mL/min	Suppressed conductivity, 0.1M TBAOH ⁺ regenerant	Stability indicating versus common impurities with some validation data provided.	19				
Alendronate ‡	Waters IC-PAK HR (75 × 4.6 mm, 6 µm particles) or a Dionex OmniPac PAX-100 (250 × 4 mm, 8 µm particles)	$1.6 \text{ mM HNO}_3 \text{ or}$ $1.76 \text{ mM HNO}_3 \text{ with}$ 20% acetonitrile at 0.5 mL/min	Direct conductivity	Analysis in intravenous solution, validation data provided	20				
Aredia [§]	Alltech Universal Anion	5 mM potassium nitrate, pH 3.5, 1.2 mL/min	Refractive index	Quantitation in dosage forms, stability indicating versus formulation components, impurities and degradation products	21				
Alendronate sodium [†] , etidronate disodium [‡] , clodronate disodium**	Waters IC-PAK HR anion (75 × 4.6 µm, 6 µm particles) and others ⁺⁺	Nitric acid, or nitric acid, potassium nitrate mixtures, 0.5–1.0 mL/min	Indirect UV at 235–245 nm	Validation of method for drug analysis in tablets of i.v. formulations	22				
Alprenolol ##, atenolol ^{\$\$} , acebutolol ##, meto-propolol ***, oxprenolol ⁺⁺⁺ , propranolol ⁺⁺⁺	Waters IC-PAK CM/D (5 µm particles)	50 mM HNO ₃ in 4% acetonitrile, 1 mL/min	UV at 270 nm	Validation of method for drug analysis in tablets and i.v. formulations	23				
Alendronate, Clodronate, Etidronate	Hamilton PRP-X100, 250 × 4.1 mm, 10 µm particles	1 mM trimesic acid, pH 5.5 at 1 mL/min	Indirect UV at 254 nm	Stability-indicating versus thermal degradation products, influence of mobile phase composition explored	24				
Sodium salicylate, Ampicillin sodium, Potassium guaiacolsulfon Benzylpencillin potassiur	Bio Tech Research Carbon B1-01, 100 × 4.6 mm ate, n	0.1M Pyrocatechol Violet–2 mM HNO ₃ at 0.8 mL/min	Suppressed conductivity with TBAOH as regenerant	Indirect drug quantitation via the counterions (Na, K). Some validation data provided.	25				
Caffeine, theobromine, theophylline ⁸⁵⁵	Dionex HPIC-CS3 (cation, 2 columns in series) Dionex OmniPac PAX-100 (anion)	100 mM HCl at 1 mL/min (cation) 15 mM KOH in 1% acetonitrile at 1 mL/min (anion)	Direct UV at 274 nm	Quantitation in injections and tablets, some method optimization and validation data provided.	26				
Paracetamol###	Waters IC-PAK A HR (10 cm, 6 µm particles)	5 mM LiOH in 5% acetonitrile at 1 mL/min	Direct UV at 300 nm	Quantitation in solid dosage forms.	27				
Oxytetracycline, Tetracycline, Chlortetracycline, Doxycycline	Dionex OmniPac PCX-100 (250 × 4 mm)	0.2 M HCl in ~ 28% acetonitrile at 1 mL/min	Direct UV at 300 nm	Method developed primarily for residuals testing	28				
Benzethonium chloride, Cetylpyridium chloride, Chlorhexidine digluconat Cetrimonium bromide, Domiphen bromide	Shim-Pack IC-A1 (100 × 4.6 mm, 10 μm) te,	0.94 mM sodium carbonate + 0.31 mM sodium bicarbonate or 0.25 mM phthalic acid + 2.4 tris(hydroxymethyl)aminoethane pH 4.31, both at 1.5 mL/min	Direct conductivity mM	Sample combusted and analyzed via the liberated anion (Cl or Br). Analytical recoveries reported.	29				
 A polyhydroxy aliphatii Monosodium monohyc 1-hydroxyethane-1,1-b Other columns include 1,4-(2'-hydroxy-3'-isopr 1-isopropylamiono-3-(1- acetominophen, N-ace 	c amine synthetic reaction intermediate. Irate salt of 4-amino-1-hydroxybutane-1, isphosphonic acid disodium salt. Dionex AS7 and AS4A, MetaChem HEA opylamino-propoxy)phenylacetamide. p-(B-methyloxyethyl)phenoxy)-2-propanol. rnaphthyoxy)-2-propanol. tyl-p-aminophenol.	t T 1-bis-phosphonic acid. § D ** 1, MA 1000Q. # 1. ** N Jl. #* 1. \$\$\$ Si	BAOH = tetrabutylammonium hydroxid bisodium-3-amino-1-hydroxy-propylider ,1-dichloromethane-1,1-bisphosphonic -(o-allylphenoxy)-3-isopropylamino-2-p I-3-acetyl-4-(2-hydroxy-3-(isopropylamin -(2-(allyloxy)-phenoxy)-3-isopropylamin eparations as anions and cations reporte	le. ne-1,1-biphosphonate pentahydrate. acid, disodium tetrahydrate salt. ropanol. no-propoxy)-phenylbutanamide. io-2-propanol. ed.					

AnalyteColumnEluentDetectionOtherRef.Copper, manganese, and zincDionex HPICE-CSS0.05 M oxalic acid (pH 5.24) at 1 mL/minUV-vis at 520 nm at 1 mL/minUV-vis at 520 nm reaction with PARUsed to characterize multivitamin supplements.67Chloride, bromideDionex IonPac AS4A0.75 mmoldm³ sodium bicarbonate, 22 mmol/dm³ sodium carbonate at 1 mL/minSuppressed conductivity acid as regenerantUsed to assess batch to batch variation in an ion exchange bile acid sequestrant66Anion scan*Dionex AS11HC with AG11 guardKOH gradient: 3 mM, 0-5 min; 5 mM at 12 min; 35 mM at 36 min; 3 mM, 36.2-50 min.Suppressed conductivity, electrolytic generationUsed to measure counter-ions for API salts69CarbocisteineDionex AS-14 with AG-14 guard0.25 mM trifluroacetic acid at 1.2 mL/minSuppressed conductivity, electrolytic generationUsed to measure active in cough syrups and oral granules70Flucloxacillin and AmoxicillinZorbax 300-SCX (Agilent), 250 × 4.6 mm, 5 µm particles0.025 M ammonium dilydrogen phosphate (pH 2.6)-acetonitrile (95/5) at 1.5 mL/minUV at 225 nmUsed to assay pharmaceutical preparations and raw materials71Ephedrine, Pseudoephedrine, Norephedrine, Norephedrine, Norephedrine, Norephedrine,Metrohm Metrosep cation 1-2 (125 × 4.0 mm)2.0 mM HNO, with 2% acconitrile, 1.2 mL/minDirect conductivity and raw materialsUsed to assay pharmaceutical preparations and raw materials72	Table II B. Pharmaceutical Applications of Ion Chromatography, Active Ingredients									
Copper, manganese, and zincDionex HPICE-CS50.05 M oxalic acid (pH 5.24) at 1 mL/minUV-vis at 520 nm after post-column reaction with PARUsed to characterize multivitamin supplements.67Chloride, bromideDionex IonPac AS4A0.75 mmol/dm³ sodium bicarbonate, 2.2 mmol/dm3 sodium carbonate at 1 mL/minSuppressed conductivity with 25 mmol/dm³ sulfuric acid as regenerantUsed to assess batch to batch variation in an ion exchange bile acid sequestrant66Anion scan*Dionex AS11HC with AG11 guardKOH gradient: 3 mM, 0-5 min; 5 mM at 12 min; 3 mM, 36.2-50 min.Suppressed conductivity, electrolytic generationUsed to measure counter-ions for API salts69CarbocisteineDionex AS-14 with AG-14 guard0.25 mM trifluroacetic acid at 1.2 ml/minSuppressed conductivity, electrolytic generationUsed to measure active in cough syrups and oral granules70Flucloxacillin and AmoxicillinZorbax 300-SCX (Agilent), 250 × 4.6 mm, 5 µm particles0.025 M ammonium dihydrogen phosphate (p1.2.6)-acctonitifie (95/5) at 1.5 mL/minUV at 225 nmUsed to assay pharmaceutical preparations71Ephedrine, Pseudoephedrine, Norephedrine, Norephedrine, Norephedrine,Metrohm Metrosep cation 1-2 (125 × 4.0 mm)2.0 mM HNO3 with 2's actentirile, 1.2 mL/minDirect conductivity, electrolytic generationUsed to assay pharmaceutical preparations and raw materials72	Analyte	Column	Eluent	Detection	Other	Ref.				
Chloride, bromideDionex IonPac AS4A0.75 mmol/dm³ sodium bicarbonate, 2.2 mmol/dm³ sodium carbonate at 1 mL/minSuppressed conductivity with 25 mmol/dm³ sulfuric acid as regenerantUsed to assess batch to batch variation in an ion exchange bile acid sequestrant66Anion scan*Dionex AS11HC with AG11 guardKOH gradient: 3 mM, 0-5 min; 5 mM at 12 min; 35 mM at 36 min; 3 mM, 36.2-50 min.Suppressed conductivity, electrolytic generationUsed to measure counter-ions for API salts69CarbocisteineDionex AS-14 with AG-14 guard0.25 mM trifluroacetic acid at 1.2 mL/minSuppressed conductivity, electrolytic generationUsed to measure active in cough syrups and oral granules70Flucloxacillin and AmoxicillinZorbax 300-SCX (Agilent), 250 × 4.6 mm, 5 µm particles0.025 M ammonium (pH 2.6)-acetonitrile (95/5) at 1.5 mL/minUV at 225 nmUsed to assay pharmaceutical preparations71Fbedrine, Norephedrine, NorephedrineMetrohm Metrosep cation 1-2 (125 × 4.0 mm)2.0 mM HNO ₃ with 2% acetonitrile, 1.2 mL/minDirect conductivity 2% acetonitrile, 1.2 mL/minDirect conductivity 2% acetonitrile, 1.2 mL/minDirect conductivity and raw materials72	Copper, manganese, and zinc	Dionex HPICE-CS5	0.05 M oxalic acid (pH 5.24) at 1 mL/min	UV–vis at 520 nm after post-column reaction with PAR	Used to characterize multivitamin supplements.	67				
Anion scan*Dionex AS11HC with AG11 guardKOH gradient: 3 mM, 0-5 min; 5 mM at 12 min; 3 mM, 36.2-50 min.Suppressed conductivity, electrolytic generationUsed to measure counter-ions for API salts69CarbocisteineDionex AS-14 with AG-14 guard0.25 mM trifluroacetic acid at 1.2 mL/minSuppressed conductivity, electrolytic generationUsed to measure active in cough syrups and oral granules70Flucloxacillin and AmoxicillinZorbax 300-SCX (Agilent), 250 × 4.6 mm, 5 µm particles0.025 M ammonium dihydrogen phosphate 	Chloride, bromide	Dionex IonPac AS4A	0.75 mmol/dm ³ sodium bicarbonate, 2.2 mmol/dm3 sodium carbonate at 1 mL/min	Suppressed conductivity with 25 mmol/dm ³ sulfuric acid as regenerant	Used to assess batch to batch variation in an ion exchange bile acid sequestrant	66				
CarbocisteineDionex AS-14 with AG-14 guard0.25 mM trifluroacetic acid at 1.2 mL/minSuppressed conductivity, electrolytic generationUsed to measure active in cough syrups and oral granules70Flucloxacillin and AmoxicillinZorbax 300-SCX (Agilent), 250 × 4.6 mm, 5 µm particles0.025 M ammonium dihydrogen phosphate (pH 2.6)-acetonitrile (95/5) at 1.5 mL/minUV at 225 nmUsed in QC test in pharmaceutical injection products71Ephedrine, Pseudoephedrine, NorephedrineMetrohm Metrosep cation 1-2 (125 × 4.0 mm)2.0 mM HNO3 with 2% acetonitrile, 1.2 mL/minDirect conductivity et conductivityUsed to assay pharmaceutical preparations and raw materials72	Anion scan*	Dionex AS11HC with AG11 guard	KOH gradient: 3 mM, 0–5 min; 5 mM at 12 min; 35 mM at 36 min; 3 mM, 36.2–50 min.	Suppressed conductivity, electrolytic generation	Used to measure counter-ions for API salts	69				
Flucloxacillin and AmoxicillinZorbax 300-SCX (Agilent), 250 × 4.6 mm, 5 μm particles0.025 M ammonium dihydrogen phosphate (pH 2.6)-acetonitrile (95/5) at 1.5 mL/minUV at 225 nmUsed in QC test in pharmaceutical injection products71Ephedrine, Pseudoephedrine, NorephedrineMetrohm Metrosep cation 1-2 (125 × 4.0 mm)2.0 mM HNO3 with 2% acetonitrile, 1.2 mL/minDirect conductivityUsed to assay pharmaceutical preparations and raw materials72	Carbocisteine	Dionex AS-14 with AG-14 guard	0.25 mM trifluroacetic acid at 1.2 mL/min	Suppressed conductivity, electrolytic generation	Used to measure active in cough syrups and oral granules	70				
Ephedrine,Metrohm Metrosep cation2.0 mM HNO3 withDirect conductivityUsed to assay pharmaceutical preparations72Pseudoephedrine,1–2 (125 × 4.0 mm)2% acetonitrile,and raw materialsNorephedrine1.2 mL/min	Flucloxacillin and Amoxicillin	Zorbax 300-SCX (Agilent), 250 × 4.6 mm, 5 μm particles	0.025 M ammonium dihydrogen phosphate (pH 2.6)–acetonitrile (95/5) at 1.5 mL/min	UV at 225 nm	Used in QC test in pharmaceutical injection products	71				
	Ephedrine, Pseudoephedrine, Norephedrine	Metrohm Metrosep cation $1-2 (125 \times 4.0 \text{ mm})$	2.0 mM HNO ₃ with 2% acetonitrile, 1.2 mL/min	Direct conductivity	Used to assay pharmaceutical preparations and raw materials	72				
Methenamine,Zorbax SCX-300 (Agilent),Acetonitrile-sodiumUV at 212 nmUsed to assay pharmaceutical tablets73Methenamine mandelate,150 × 4.6 mm, 5 μmperchlorate monohydrate(0.1M, pH 5.8), 1 mL/min73	Methenamine, Methenamine mandelate Methenamine hippurate	Zorbax SCX-300 (Agilent), , 150×4.6 mm, 5 μm	Acetonitrile-sodium perchlorate monohydrate (0.1M, pH 5.8), 1 mL/min	UV at 212 nm	Used to assay pharmaceutical tablets	73				
Salbutamol,Metrohm Metrosep cation1.8 mM HNO3 with 2% acetonitrile, 1.0 mL/minDirect conductivity Used to test tablets and biological74Fenoterol,1-2 (125 × 4.0 mm)acetonitrile, 1.0 mL/min(clinical) samplesClorprenaline, Clenbuterol	Salbutamol, Fenoterol, Clorprenaline, Clenbuterol	Metrohm Metrosep cation 1–2 (125 × 4.0 mm)	1.8 mM HNO ₃ with 2% acetonitrile, 1.0 mL/min	Direct conductivity	Used to test tablets and biological (clinical) samples	74				
Anion suite [†] Dionex IonPac AS18 KOH gradient; Suppressed conductivity Used to test toothpaste-like 75 (250 × 2 mm) with AG18 guad 1.0–3.5 mM from 0 to 5 min; formulations and to follow the 4.0 mM from 5 to 12 min; decomposition of monoflurophosphate 4.0 to 12 mM from 12 to 20 min; and glycerphosphate and glycerphosphate 12 to 28 mM from 28 to 40 min; 0.25 mL/min 80 mM from 28 to 40 min; 0.25 mL/min To the second sec	Anion suite [†]	Dionex IonPac AS18 (250 × 2 mm) with AG18 guard	KOH gradient; 1.0–3.5 mM from 0 to 5 min; 4.0 mM from 5 to 12 min; 4.0 to 12 mM from 12 to 20 min; 12 to 28 mM from 20 to 28 min; 80 mM from 28 to 40 min; 0.25 ml	Suppressed conductivity	Used to test toothpaste-like formulations and to follow the decomposition of monoflurophosphate and glycerphosphate	75				
Etidronate,Phenomenex Phenosphere20 mM Sodium citrate,Indirect UV at 226 nmUsed to assay tablets76Clodronate,SAX (150 × 2.0 mm, 5 µm)pH 3.6, 0.3 mL/minrrr76	Etidronate, Clodronate,	Phenomenex Phenosphere SAX (150 \times 2.0 mm, 5 $\mu\text{m})$	20 mM Sodium citrate, pH 3.6, 0.3 mL/min	Indirect UV at 226 nm	Used to assay tablets	76				
Pamidronate,Phenomenex Sphereclone SAX20 mM Sodium citrate, pH 4.6, 0.25 mL/minIndirect UV at 222 nmUsed to assay tablets76	Pamidronate, Alendronate	Phenomenex Sphereclone SAX (250 \times 2.0 mm, 5 μ m)	20 mM Sodium citrate, pH 4.6, 0.25 mL/min	Indirect UV at 222 nm	Used to assay tablets	76				
Chromium (III) Shodex RSpak NN-614, 90 mM am monium sulfate ICP-MS Used to establish Cr speciation in 77 and Chromium (VI) 150 × 6 mm + 10 mM ammonium nitrate, pH 3.0-3.5, 0.3 mL/min homeopathic drugs 77	Chromium (III) and Chromium (VI)	Shodex RSpak NN-614, 150 × 6 mm	90 mM am monium sulfate + 10 mM ammonium nitrate, pH 3.0–3.5, 0.3 mL/min	ICP-MS	Used to establish Cr speciation in homeopathic drugs	77				
IodineChromsep (Varian)0.1 M HNO3 with 20%Amperometric atPotentially applicable to assay of78LC-Varianacetonitrile and 0.5 mM EDTA, 0.6 mL/mina Ag electrodeiodine-containing drugs78	lodine	Chromsep (Varian) LC-Varian	0.1 M HNO ₃ with 20% acetonitrile and 0.5 mM EDTA, 0.6 mL/min	Amperometric at a Ag electrode	Potentially applicable to assay of iodine-containing drugs	78				
Ascorbic acid Dionex IonPac AS11-HC 1.25 mM NaOH, Amperometric at Used to test vitamins 79 1.5 mL/min a Pt electrode	Ascorbic acid	Dionex IonPac AS11-HC	1.25 mM NaOH, 1.5 mL/min	Amperometric at a Pt electrode	Used to test vitamins	79				

* Separation of anions including acetate, chloride and phosphate; elution properties of other common anions reported. [†] Including fluoride, chloride, nitrite, nitrate, glycerophosphate, monoflurophosphate, sulfate, oxalic acid, and phosphate.

Table III A. Pharmace	Table III A. Pharmaceutical Applications of Ion Chromatography, Excipients, and Inactive Formulation Components									
Analyte	Column	Eluent	Detection	Other	Ref.					
Acetate, lactate, chloride, phosphate citrate, sulfate	Hamilton PRPX-100, 250 × 4.1 mm; Waters IC PAK A, 50 × 4.6 mm, Vydac 300 IC, 50 × 4.1 mm	Various potassium hydrogen phthalate solutions (some with acetonitrile at 1.3–2.0 mL/min)	Indirect UV at 254 nm	Used to measure these anions in i.v. solutions	30					
Oxalate	Dionex AS-1	1 mM potassium hydrogen phthalate, 2 mM sodium borate, pH 9.1 at 2-4 mL/min	Indirect UV at 250 nm pharmaceutical LVP solution	Recovery data provided from a generalized	30					
Lactic acid and lactic acid lactate	Dionex HPICE-AS1 (ion exclusion)	1 mM sodium octanesulfonate	Suppressed conductivity	Used to characertize Amrinone Lactate Injection	31					
Sodium, potassium, cesium, magnesium, calcium	Zorbax SCX-300, 250 × 4.6 mm	2.5 mM copper sulfate at 1.2 mL/min	Indirect UV at 230 nm	Used for the analysis of a cardioplegic solution, some validation data	32					
Sodium lauryl sulfate	Dionex Omnipac PAX-500, 250 × 4 mm	Gradient used* at 1 mL/min	Suppressed conductivity, 12.5 mM sulfuric acid as regenerant	Characterization of tablet dosage form	33					
Chloride, sulfate, phosphate, citrate	Dionex Omnipac PAX-500, 250 × 4 mm	40 mM NaOH in 5% methanol at 1 mL/min	Suppressed conductivity, 12.5 mM sulfuric acid as regenerant	Characterization of a liquid veterinary drug	34					
Citrate	Hamilton PRP-X100, 150 × 4.1 mm, 10 μm particles	0.875 mM trimesic acid, pH 10.0 at 1.5 mL/min	Indirect UV at 280 nm	Used to characterize a number of commercial pharmaceutical products, validation data provided	35					
Methane-through octane sulfonic acids	Dionex PAX-500	Gradient used [†] at 1 mL/min	Suppressed conductivity with 12.5 mM sulfuric acid regenerant	Validation data provided	36					
Methanesulfonic acid, fumaric, maleic, succinic, tartaric acids	Dupont Zorbax NH2, 250 × 4.6 mm, 5 μM particles	20 mM sodium dihydrogen phosphate, 0.13 mM phosphoric acid (pH 4.2) in 5% acetonitrile	Direct conductivity	Method development data provided	37					
Chloride, bromide, sulfate	Bio Tech Research Carbon BI-01, 100 × 4.6 mm	2 mM sodium carbonate, 1 mM tetrabutylammoniumhydroxide, 5% acetonitrile at 0.8 mL/min	Suppressed conductivity, 12.5 mM sulfuric acid regenrant	In D&C color additives. Sample analysis by direct injection or after oxygen flask combustion	38					
Oxalate, citrate	Dionex AS-1	10 mM TRIS, 30 mM sulfate, pH 6.5 at 1 mL/min	Direct UV at 210–220 nm	Accuracy documented in a number of i.v. products	39					
Acetic, malic, lactic acids	Bio-Rad Aminex HPX-87H, 300 × 7.8 mm	0.15% sulfuric acid or 0.005% phosphoric acid at 0.8 mL/min	Direct UV at 210 nm	Ion Exclusion method. Assay validation data provided for use in TPN solutions	40					
Malic, citric and tartaric acids	Shimpack IC-A1, 100 × 4.6 mm, 12.5 μm particles	1.5 mM phthalic acid at pH 4.0 at 1.2 mL/min	Series bulk acoustic wave detector	Reported to be 5X more sensitive than direct conductivity. Used to characterize a homeopathic drug	41					
Phosphate, Phosphite, hydrophosphite	Waters IC-PAK A HR, 6 µm particles	Gluconate/borate buffer containing acetonitrile and <i>n</i> -butanol at 1 mL/min	Direct conductivity	Used to characterize several tablet and syrup products	42					

* This separation utilized a 60 minute gradient formed with four eluents including water, acetonitrile–water (90:10), 200 mM NaOH, and methanol–water (45:55). * A = 5 mM sodium borate, 5% acetonitrile, B = 20 mM sodium borate, 40% acetonitrile. Time = 0 min, 100% A. Time = 10 min, 100% B. Time = 15 min, 100% B.

Г

Analyte	Column	Eluent	Detection	Other	Ret
Sulfite	Wescan Anion Exclusion H/S, 250 × 4.6 mm	20 mM sulfuric acid at 0.75 mL/min	Direct conductivity	Used to characterize several herbal medicines.	43
Additives in foods and pharmaceutical preparations *	Shimadzu Shim-pack IC-A3, 150 × 4.6 mm, 5 μm particles	5 mM sodium phosphate monobasic (pH 8.2) with 4% acetonitrile at 1 mL/min	Direct UV, switched between 205 and 227 nm	Some assay validation and performance data provided (tablet dosage form).	44
Acetic and actic acids	Alltech Anion Exclusion, 300 × 7.8 mm	2 mM sulfuric acid at 0.7 mL/min	Direct conductivity	Validation of an ion exclusion method for use in characterizing LVP products.	45
iilicic acid, calcium, nagnesium, aluminum	Tosoh TSK gel IC-Anion-PW (50 × 4.6 mm, 10 µm particles)	1 mM NaOH with 10% methanol at 1.2 mL/min	Conductivity	Cations separated as their EDTA complexes. Validation data provided.	46
EDTA	Dionex AS-14 (250 × 4 mm) and AG-14 guard	10 mM carbonate buffer (pH 10.5 or 11.0) at 1 mL/min.	Suppressed conductivity	Method applied to analysis of contact lens care solutions and injections solutions. Validation data provided.	80
Anions (Cl, Br) in quaternary ammonium salts	Shim-Pack IC-A1, 100 × 4.6 mm, 10 μm particles	# 1: 0.94 M sodium carbonate (pH 9.85). # 2: 2.5 mM phthalic acid + 2.4 m tris(hydroxymethyl)–aminoethane (pH 4.31). Flow rate: 1.5 mL/min	Direct conductivity	Method applied to the analysis of dental hygiene solutions (mouth rinses and disinfectants).	81
Sulfate	Dionex IonPac AS14, 250 × 4 mm, with AG14 guard	7.0 mM sodium carbonate + 2 mM sodium hydrogen, carbonate 1.2 mL/min.	Suppressed conductivity	Method, with appropriate sample preparation, used to assess total sulfate and sulfate inside and outside the liposome.	82
Fl, Cl, Br, sulfate n seawater	Dionex IonPac AS14, 250 × 4 mm, with AG14 guard	NaHCO ₃ (3.5 mM) + Na ₂ CO ₃ (1 mM) at 1.2 mL/min	Suppressed conductivity	Method applied to the analysis of seawater as a nasal spray diluent. Separation optimization is discussed. Validation data provided.	83
Citrate, acetate	Bio-Rad HPX-87H, 300 × 7.8 mm.	25 mM sulfuric acid at 0.8 mL/min	UV at 210 nm	Method uses SPE sample treatment. Method is used in production of medical fluids. Validation data provided.	84
Citrate, phosphate	Dionex IonPac AS-11, 250 × 4.6 mm, with AG-11 guard.	20 mM sodium hydroxide, 2 mL/min.	Suppressed conductivity.	Assessment of USP method for these analytes. Method optimization discussed. Validation data provided.	85
Citrate, phosphate	Dionex IonPac AS-11, 250 × 4.6 mm, with AG-11 guard.	20 mM sodium hydroxide, 2 mL/min.	Suppressed conductivity.	Assessment of USP method for these analytes. Method optimization discussed. Validation data provided.	86
Counter ion of ionized oharmaceutical salts	Various	Various	Various	This is a general review of IC, CE and realated methods.	87

Table IV A. Pharmaceutical Applications of Ion Chromatography, Degradation Products and Impurities									
Analyte	Column	Eluent	Detection	Other	Ref.				
5-Hydroxy- methylfurfural (5-HMF)	Wescan Anion Exclusion HS, 100 × 4.6 mm	10 mM sulfuric acid at 0.8 mL/min	UV detection at 285 nm	Performance contrasted favorably with reversed phase HPLC method.	47				
Aluminum	Waters Protein-Pak SP-5PW, 75 × 7.5 mm	0.01M potassium sulfate, pH 3.0 at 1 mL/min	Fluorescence (395 nm excitation, 500 nm emission) with post column reaction	Used for the quantitation of trace levels of Al in pharmaceutical diluents.	48				
Cyanamide*	Dionex Ion-Pac AS-10	50 mM NaOH in 1% acetonitrile	PAD	Validation information provided.	49				
Common anions [†]	Dionex IonPac AS4A	1.75 mM sodium bicarbonate, 2.5 mM sodium carbonate at 1 mL/mir	Suppressed conductivity	Characterization of high purity water for sub-ppb trace ionic contaminants with pre-concentration.	50				
Common cations [‡]	Dionex IonPac CS12	20 mM methanesulfonic acid at 1 mL./min	Suppressed conductivity	Characterization of high purity water for sub-ppb trace ionic contaminants with pre-concentration.	51				
Sulfamate, sulphate	Hamilton PRP-X100 (150 × 4.6 mm, 10 µm particles)	5.8 mM <i>p</i> -hydroxybenzoic acid, 2.5% methanol at pH 9.4, 1.5 mL/min	Indirect UV at 310 nm	Degradation products of Topiramate.	51				
Methansulfonic acid	Hamilton PRP-X100 (150 × 4.1 mm, 10 µm particles)	Acetonitrile/60 mM NaOH (20/80) at 2 mL/min	Suppressed conductivity with 50 mN sulfuric acid as regenerant.	Measured this drug synthesis intermediate in drug raw materials, some validation data provided.	52				
Citric, malic, ascorbic acid	Shim-pack IC-A1 (100 × 4.6 mm)	20 mM potassium hydrogen phthalate at 1 mL/min	Direct conductivity and Quartz Crystal detector	Used to determine these components in a Chinese herbal medicine.	53				
Amylamine, tert-butylamine	Dionex CS-14 (250 × 4 mm, 5 µm particles)	Acetonitrile/50 mM methanesulfonic acid (5/95) at 1 mL/min	Suppressed conductivity with 100 mM tetrabutyl ammonium hydroxide as regenerant.	Amylamine is a synthetic residual and t-butylamine is the active's counter-ion (measured for purity assessment).	54				
Nitrite, nitrate	Exsil SAX (125 × 4.6 mm)	22 mmol/dL potassium dihydrogen phosphate, 3 mmole/dL phosphoric acid with 20% acetonitrile at 1.6 mL/min	Direct UV at 214 nm, or electrochemical	Used to study the oxidative denitrification of hydroxyguanidines.	55				
Carbonate	Dionex IonPac ACE-AS1 (ion exclusion)	Water at 1 mL/min	Conductivity	Used to study the oxidative decarboxylation of aromatic carboxylic acids	55				
Sulfate	Dionex AS4-SC	1.8 mmol/dL sodium carbonate, 1.7 mmol/dL sodium bicarbonate at 1.5 mL/min	Direct UV at 214 nm or suppressed conductivity	Used to study the generation of sulfate from perthiol drugs.	55				
Methanesulfonic acid	Dionex IonPac AS4A-SC	0.015% sodium hydrogen carbonate at 2 mL/min	Suppressed conductivity with 0.075% sulfuric acid as regenerant	Hydrolysis of busulfan tablets, validation data provided.	56				

[†] Including chloride, nitrite, bromide, nitrate, orthophosphate, and sulfate.
 [†] Including lithium, sodium, ammonium, potassium, magnesium and calcium.

I

Table IV B. Pharmaceutical Applications of Ion Chromatography, Degradation Products and Impurities								
Analyte	Column	Eluent	Detection	Other	Ref.			
Oxalic acid, oxamic acid, and oxamide	Dionex IonPac ICE-AS1 (250 × 9 mm, 7.5 µm particles)	5:95 acetonitrile–0.1% sulfuric acid at 0.8 mL/min	UV at 205 nm	Impurity products in synthetic processes, some validation data provided.	57			
Sulfate and sulfamate	Dionex IonPac AS5A-5m (150 × 4 mm)	Gradient with mobile phase A being water and mobile phase B being 50 mM NaOH at 1 mL/min	Suppressed conductivity	Assay used to measure these analytes as degradation products of Topiramate. Extensive validation information provided.	65			
Trifluoroacetate	Dionex IonPac AS18, 250 × 4 mm, with AG18 guard	KOH gradient at 1 mL/min: 0–6 min, 22 mM; 6–12 min, 28 mM, 12–15 min, 50 mM, 15–20, 22 mM	Suppressed conductivity	Assay is used to measure residual TFA in injection solutions and peptides. Method optimization and evaluation data provided.	88			
Azide	Dionex IonPac AS11, 250 × 4 mm, with AG11 guard	NaOH gradient at 1 mL/min: 0–14 min, 1. mM; 15–23 min, 15 mM; 23–24 min, 1.2 mM	Suppressed conductivity	Assay is used to measure residual azide in protein samples. Method validation data provided.	89			
Monoethylsulfate	Metrohm Metrosep A Supp5, 250 × 4 mm, 5 µm particles	Sodium carbonate-sodium hydrogen carbonate mixture (339 mg and 84 mg per 1000 m at 0.7 mL/min	Suppressed conductivity.	Assay is used to measure residual synthesis byproduct. Method validation data provided; method compared to CE.	90			
Monomethylamine	Metrohm Metrosep C3-250	1 mM nitric acid at 1 mL/min	Suppressed conductivity	Method is coupled with in-line column matrix elimination for the determination of 0.05 mg/L of amines in cationic drugs.	91			
<i>N</i> -methylpyrrolidine	Metrohm Metrosep C2-150	6 mM nitric acid with 10% acetonitrile	Direct conductivity	Method proposed as an alternate for the USP method for determining this analyte in cefepime hydrochloride. Method optimization and validation details provided.	92			
Azide	Metrohm Metrosep A Supp10-250	5 mM each of sodium carbonate and sodium bicarbonate, 1 mL/min	Suppressed conductivity	Method proposed as an alternate for the USP method for determining this analyte in Irbesartan drug. Method optimization and validation details provided. Method employs in-line sample preparation for matrix elimination.	93			
Tetrabutylammonium bromide	Metrohm Metrosep Cation C2-150	7.5 mM nitric acid with 35% acetonitrile, 1 mL/min.	Direct conductivity	Method separates tetramethyl-through tetrapropyl-ammonium bromides. Method employs on-line preconcentration. Method optimization and validation data provided	94			
Formic acid		90% 0.5mM sulfuric acid, 10% acetone		Method is used to measure analyte in ceftazidime drug substance. Method validation data provided.	95			
Sulfated glycosaminoglycans (GAGs)	Dionex IonPac AS-11 or AS-11HC	Various gradients. The USP method utilizes a gradient based on a phosphate buffer containing sodium perchlorate (pH 3) while the literature references utilizes a gradient based on a mobile phase containing 2.5 M NaCl and 20 mM Tris . (pH 3, phosphate buffer)	UV detection at low wavelength (e.g., 202, 215 nm)	Method is utilized to characterize Heparin Sodium and Heparin Sodium Injection for impurities such as oversulfated chondrotin sulfate and additional GAGs. The reported LODs are on the order of 0.1% by weight for the individual impurities. Some method validation is provided in the individual references.	103–107			

Table V. Pharmaceutical Applications of Ion Chromatography, Process Streams								
Analyte	Column	Eluent	Detection	Other	Ref.			
Carbohydrates (galactose, glucose, ribose, fructose)	Dionex CarboPac PA1 (250 × 4 mm)	150 mM NaOH at 1 mL/min*	PAD (Au electrode)	Methods used to quantitate substrates and metabolites in fermentation broth.	58			
Inorganic cations (calcium, magnesium, ammonium, potassium, sodium)	Dionex IonPac CS10 (250 × 4 mm) acid at 1 mL/min	20 mM HCl, 4 mM d,l-2,3-diaminopropionic	Suppressed conductivity with 0.1 M tetrabutylammonium hydroxide as regenerant		59			
Sugar alcohols (glycerol, inositol, mannitol, sorbitol)	Dionex HPICE-AS1 (250 × 4 mm), ion exclusion	100 mM perhloric acid at 0.8 mL/min	PAD (Pt electrode)		59			
Sodium, ammonium, potassium , magnesium, calcium	Dionex IonPac CS12 (250 × 4 mm)	4 mM methanesulfonic acid at 1 mL/min	Suppressed conductivity	Used to optimize culture media composition.	59			
Chloride, nitrate, sulfate	Ion exclusion: Biorad Organic Acids column HPAH (100 × 7.8 mm, 9 μm particles) Ion exchange: Dionex AS4A	Ion Exclusion: 1 mM octanesulfonic acid with 2% isopropyl alcohol Ion Exchange: 2.8 mM sodium carbonate, 1.7 mM sodium bicarbonate, both at	Suppressed conductivity with suppression for both the ICE and IC separations 2 mL/min	Coupled ion exclusion (on-line sample preparation) with ion exchange (analytical separation) to analyze these analytes in fermentation broth containing high levels of organic acids.	60			
Dimethyl- benzenesulfonate	Dionex OmniPack PAX-100	5 mM sodium chloride, 0.2 mM sodium hydroxide, 32% acetonitrile at 1 mL/min	Direct UV at 220 nm	Used to perform residuals testing during cleaning validation.	61			
Magnesium	Shim-pack IC-C1 (150 × 5 mm, 10 µm particles)	4 mM tartaric acid, 2 mM ethylenediamine at 1.5 mL/min	Double cell bulk acoustic wave detector	Used to follow decrease in magnesium levels in cell culture media.	62			
Hydroxylamine	Dionex CS14 (250 × 4 mm)	11 mM sulfuric acid at 1 mL/min	PAD, Au working electrode	Analyte is a mutagenic active ingredient raw material whose levels were monitored in final waste streams before disposal.	63			
Chloride, nitrate, sulfate	Dionex AS4A-SC	1.8 mM sodium carbonate, 1.7 mM sodium bicarbonate at 2 mL/min	Suppressed conductivity	Validated as the EP method for characterizing Purified Water.	64			
Ammonium, magnesium, calcium	Dionex CS 12	20 mM methanesulfonic acid at 1 mL/min	Suppressed conductivity	Validated as the EP method for characterizing Purified Water.	64			
Hydroxyamine	Dionex IonPac CS14, 250 × 4 mm, with CG14 guard	11 mM sulfuric acid at 1 mL/min	Pulsed amperometric detection at an Au electrode	Analyte is measured in waste streams as it may interfere with sewage plant operation. Method optimization and validation discussed.	96			
CIP-100 detergent (EDTA as target analyte)	Metrohm Metrosep A Supp5-150, 150 × 4 mm, 5 µm particles	3,2 mM sodium carbonate + 1.0 mM sodium hydrogen carbonate at 0.7 mL/min	Direct conductivity	Method proposed for cleaning validation applications. Method validation data reported.	97			
* A gradient constant f	w the earlach drates is also	d						

* A gradient separation for the carbohydrates is also reported.

Table VI A1. Examples of	Table VI A1. Examples of Validation Data For Quantitative Ion Chromatography Methods								
		Per	formance Parameters						
Application	Accuracy	Precision	Linearity	Specificity	LOQ/LOD	Ruggedness	Ref.		
A. Active Ingredient Analysis	S.								
Alendronate in i.v. and tablet formulation by suppressed conductivity detection	Spiked drug into placebo, at 80, 90, 100, 110, and 120% of formulation level. Mean recovery, 100.2%. Demonstrated equivalence versus an HPLC– fluorescence method.	Injection, $n = 10$ at 0.05 mg/mL, 1% RSD by peak height. Total method, n = 10 at 2.5 mg/mL 1.1% RSD or less.	Coefficients of determinations of 0.999 or greater for range of 40–160% of assay level. Non-zero intercepts observed.	Tested against formulation placebo and known thermal decomposition products	Not evaluated.	Evaluated by performing testing on four analytical systems	20		
Biphosphonate drugs with indirect UV detection	Spiked drug into placebo, at 50, 75, 100, 125, and 150% of formulation level. Mean recovery for three drugs, 100 ± 1% at sample level of 0.05 mg/mL.	Injection to injection, $n = 10$ at 0.05 mg/mL (25 mL injection) or 0.4 mg/mL (50 mL injection). %RSD less than 1%. Total method, 1–2% RSD for $n = 10$.	Coefficients of determinations of 0.999 or greater for range of 20–200% of formulation level. Areas better than heights, non-zero intercepts observed	Tested against formulation placebo and known thermal decomposition products	LOD of 0.001 mg/mL at S/N of 4 for all analytes	Evaluated via two analysts/two system testing, testing using five columns, and examining performance on one column after at least 500 injectio	22 ons		
Disodium clodronate in bulk materials pharmaceuticals by UV with post-column derivatization	Spiked drug into placebo capsules and tablets at 80, 100 and 120% of nominal formulation level (300–1000 mg). Mean recovery = 99.5–100.7%.	Six samples of bulk material and pharmaceuticals assayed. %RSD from 0.8% to 1.3% for 60–820 mg of drug.	50-175% of nominal analyte conc. (0.02–0.07 mg/mL), r ² = 0.9999 (<i>n</i> = 6 at each level).	Tested against formulations degraded by acid, base, peroxide, heat, UV light) and against mixture of known impurities.	Not evaluated	Stability of sample solutions = 60 h at RT. Tested two columns with system suitability tests	18		
SPE removal of non-polar compounds, ion exclusion separation and UV detection of citrate and acetate in medical fluids	Recovery, compared with non-SPE treated, ranged from 99.9 to 100.3% for 80 to 120% concentration	%RSD ranging from 0.0 to 0.3%.	$r^2 \ge 0.999$, with % y-intercept ≤ 0.6	The SPE treatment did not introduce citrate or acetate.	Not evaluated.	Two analysts on separate systems. Pooled data, 99 to 101% recovery, and % RSD \leq 0.5	68		
Quantitation of carbocistine (acidic amino acid) in syrup formulations	Standard additions into syrup formulations (95–105% of label); recovery ranged from 96–105%.	%RSD of triplicate injections = 1.5%; %RSD of triplicate preparations of sample = 1.8–3.6%.	r = 0.99994 over range of 50–400 μg/mL.	Not evaluated.	LOD = 0.14 µg (5.6 µg/mL)	Not reported	70		
Quantitation of anionic constituents of APIs in early product development	Recovery determined in spiked portions of dissolved APIs at 80–120% of anticipated level; results compared to data obtained by other methods. Recovery ranged from ~93–104%	Triplicate preparations (dissolutions); %RSD ranging from 0.2% to 2.0% RSD. %.	Linear ranges as follows (mg/L): F: 0.2–10; Cl: 0.3–30; NO ₂ : 0.4–20; Br: 4–100; NO ₃ : 4–100; SO4: 6–150, PO ₄ : 1.5–150	No blank responses noted for the APIs tested.	Not reported.	Chloride and phosphate standard and samples stable for 9 days at RT; acetate standards and samples stable for 2 days at RT, 9 days refrigerated	69 Is		
Simultaneous quantitation of flucloxacillin and amoxicillin in injection products; QC applications	Recovery in synthetic mixtures prepared at 80–120% of label; ranged from 100 ± 1%.	Six individual weighings; % RSD < 1%.	r ² = 1.0000 over range of 50–150 μg/mL (50–150% of nominal)	Chromatograms of samples aged for 7 days at RT exhibited no interfering peaks.	LOQ = 0.2 µg/mL	Sample and standard solutions stable for at least 4 h at RT	71		

Table VI A2. Examples of Validation Data For Quantitative Ion Chromatography Methods								
		Pe	rformance Parameters					
Application	Accuracy	Precision	Linearity	Specificity	LOQ/LOD	Ruggedness	Ref.	
A. Active Ingredient Analysis								
Quantitation of ephedrine and related compounds in injections solutions, powders, and herbs	Analysis of spiked injection product and powder; recovery of 96%–103%. Analyzed products versus label claim; good agreement obtained.	%RSD of 11 standard injection < 2%.	Linear ranges as follows (µg/mL): EPH: 0.08–50; PEPH: 0.08–40; NEPH: 0.06–40.	No interference from 500-fold excess of Na, K, NH ₄ or 100-fold excess of Ca and Mg.	LOD = 0.02 µg/mL	Not reported; method optimization described.	72	
Quantiation of methenamines in tablets	Analysis of placebo tablets spiked with 60–140% of label; recovery = 100 ± 1%.	% RSD < 1% for 3 or 6 injections.	r ² > 0.9999 over range of 0.035–7.01 mg/mL.	Analysis of placebos and forced degradation samples produced no interfering peaks.	LOD = 0.02 mg/mL; LOQ = 0.03 mg/mL.	Standard solutions stable for at least 48 hours at RT. Intra-day ($n = 6$) and inter-day ($n =$ %RSD < 2%.	73	
Quantitation of B2-agonists (salbutamol, SAL; fenoterol, FEN; clorprenaline, CLO; clenbuterol, CLE) in tablets	Analysis of spiked tablet preparations; % recovery ranged from 97% to 104%.	% RSD of <i>n</i> = 11 ranged from 1.1% to 2.8% RSD.	Linear ranges as follows (ng/mL): SAL: 7–1400; FEN: 34–7800; CLO: 8–1600; CLE; 25–7500.	Not reported.	LODs as follows (ng/mL): SAL, 2; CLO, 3; FEN, CLE, 10.	Method optimization discussed. Effect of various operatir parameters noted.	74 g	
Quantitation of common anions in dentifrices for QC	Analysis of spiked toothpaste samples (spike level from 0.5 to 1.0 mg/L); % recovery maged from 96% to 104%.	% RSD form 10 replicate injections ranged from 0.15% RSD to 1.8% RSD.	Linear ranges as follows (mg/L): F: 0.05–20; Cl: 0.1–50; NO ₂ : 0.5–60; NO ₃ , GPO4: 0.5–40; Oxalate: 0.1–30; MGPO ₄ , SO4, PO ₄ : 0.5–50.	Not reported.	LODs ranged from 0.001 mg/L (F) to 0.013 mg/L (GPO4)	Method optimization is discussed. Interday %RSD of 2.8% RSD were reported.	75	
Quantitation of Bisphosphonates (etidronate, ET; clodronate, CL; pamidronate, PA; alendronate, AL) in bulk materials or tablets.	Recovery study for AL. Spike range = 100–550 µg/mL, recoveries ranged from 97% to 103%.	Within-day precisions (<i>n</i> = 3) reported as < 2% RSD.	Linear range from 50–400 µg/mL for ET and CL; 100–500 µg/mL for PA and AL.	All peaks examined for peak purity via spectral analysis.	LOD (µg/mL): ET, 5.3; CL, 5.1; PA, AL, 10. LOQ (µg/mL): ET, CL, 50; PA, AL, 100.	Method optimization is discussed. Inter-day precision ($n = 6$) reported as < 2% RSD.	76	
Quantitation of ascorbic acid in vitamins	Recoveries of spiked samples ranged from 94.2% to 96.1% and analysis of commercially available preparations gave results that agreed with the labeled values.	%RSD = 2.5% (<i>n</i> = 5)	$r^{2} = 0.9982$ over the range of 1×10^{-6} to 1×10^{-2} M.	No interferences from common anions; no interferences noted in analysis of pharmaceutical samples.	LOD = 7.3 x 10 ⁻⁵ M.	Detector response and solutions note to be stable for 30 at RT. Optimization of the detector is discussed.	79 d days	

Table VI B1. Examples of Validation Data For Quantitative Ion Chromatography Methods								
		Perfor	mance Parameters					
Application	Accuracy	Precision	Linearity	Specificity	LOQ/LOD	Ruggedness	Ref.	
B. Excipients and Inactive In Alkyl sulfonic acids (for example, methansulfonic acid, MSA) by suppressed conductivity, total method performance (sample extraction)	gredients (continued). Spiked samples at 6 levels between 80 and 120% of allowable limit, mean recovery (<i>n</i> = 6) = 102.9%.	Injection precision (<i>n</i> = 5) at the specification limit was 5% RSD.	<i>r</i> ² = 0.9999 over application range.	Resolution demonstrated versus other sulfonic acids and chloride.	LOQ of 40 ppm (mg/g) in sample for MSA	Stock solutions of analytes stable for 1 week at RT. Ana 4 samples across 3 two columns and mobile phase preparations. % RSD = 7.5%.	36 Iyzed 2 days, fresh	
Methane sulfonic acid in intermediates and drug substances by direct conductivity	Determined by mass balance calculations in batch release applications.	Injection precision, 1–2% RSD. Method precision, 1–3% RSD	$r^2 = 0.9997$ over the range of 0.1–5 mg/mL.	Extensive investigation of elution characteristics.	Not evaluated.	Not evaluated.	37	
Acetic and lactic acids in LVP i.v. solutions by ion exclusion with direct conductivity	Autoclaved formulation blanks spiked with 80, 100 or 120% of product specification levels. Acetate recovery 99–101%, 1500–7900 mg/L. Lactate, 99–103%, 680–3800 mg/L.	For 5 preparations in 4 formulations, 0.35–1.2% RSD at levels from 840–6600 mg/L.	Examined at 50 to 150% of sample dilution target with 5 standards, triplicate injections each (150–450 mg/L for sodium acetate trihydrate, 50 to 150 mg/L for sodium lactate). r2 = 0.9997, other data provided.	Autoclaved formulation blanks examined. Examined a test sample cocktail containing 13 dextrose impurities, related substances, "foreign sugars" and decomposition products.	n LOQ = 9.9 mg/L for sodium acetate trihydrate and 3.6 mg/L for sodium lactate	Performed accurate assessment with two runs (different analysts and columns). No difference in performance note Also examined robustness and response stability	cy 45 t d.	
EDTA in contact lens care solutions and liquid injections	Spiked contact lens care solutions and a simulated drug injection solution; % recoveries ranged from 96% to 105%.	%RSD (<i>n</i> = 9) at 5 μg/mL = 1.5%.	r > 0.998 over range of 2.7 to 100 µg/mL.	Good resolution reported for commonly co-existing anions and other aminopolycarboxylic acids. Potential interference from othe pharmaceutical substa was examined.	LOD = 0.87 µg/mL. r nces	Method optimization is discussed.	80	
Sulfate in liposome formulation	Standard additions of ammonium sulfate; recoveries ranged from 91% to 108%.	% RSD (<i>n</i> = 3) of 1% or less	<i>r</i> ² > 0.999 over range of 0.075 to 0.35 mM.	No interfering peaks in placebo chromatograms.	LOD = 0.0006 mM. LOQ = 0.026 mM.	Studied day-to-da and analyst-to- analyst intermedia precision. %RSD Samples stable refrigerated for 3 of	y 82 nte < 2%. days.	
Inorganic anions in seawater used as diluent in nasal sprays	Analysis of laboratory preparations; recoveries of 99% to 101%.	% RSD (<i>n</i> = 5) of 2% RSD or less.	r ² > 0.999 over the following ranges: F: 0.02–0.4 mg/L; Cl: 40–160 mg/L; Br: 0.1–0.8 mg/L; SO4: 4–16 mg/L.	Baseline resolution of the analytes obtained.	Not reported.	Not reported.	83	
Citrate and acetate in medical fluids	Analysis of laboratory preparations at 80–120% of nominal; recoveries of 99% to 101%.	Multiple preparations, % RSD = 0.3% or less.	$r^2 > 0.999$ over the range of 80–120% of nominal (2 to 6 g/L).	No interfering peaks noted in placebo samples.	Not reported.	Precision for multiple analysts, %RSD = 1% or le Prepared samples for 48 h at RT.	84 ss. stable	
Citrate and phosphate in injection solutions (USP Monograph)	Analysis of laboratory preparations at 80–120% of nominal; recoveries of 98% to 103%.	Multiple dilutions (<i>n</i> = 3 or 6), %RSD = 1.5% or less.	$r^2 > 0.999$ over the range of 50–150% of nominal (10 to 30 mg/L for citrate, 6 to 18 mg/L for phosphate).	No interfering peaks noted in matrix blanks.	Not reported.	Considered robustness in term mobile phase preparation, effect of diluents and eff salts used for stan	85 is of t ect of idards.	
Citric acid/citrate and phosphate in dosage forms	Analysis of spiked samples of commercial products; recoveris of 95–105% reported. Generally close agreement between obtained results and labeled amounts.	6 Injections of 3 days; interday precision (% RSD) < 1% and intraday precision < 2%	$r^2 > 0.999$ over the range of 0.2–100 µg/mL for citrate, 0.2–60 µg/mL for phosphate).	Demonstrated by similarity in peaks shape and retention time for analytes in standards and samples.	LOQ = 0.2 µg/mL for both analytes	Demonstrated considering the in of analyst, colum lot, equipment and eluent prepar	86 npact n ation.	

		Perfor	mance Parameters				
Application	Accuracy	Precision	Linearity	Specificity	LOQ/LOD	Ruggedness	Ref.
C. Impurities and/or Degrada	ation Products.						
Cyanamide as a synthesis residual via PAD	Bulk drug substance spiked with 3 to 25 ppm additional analyte, % recovery from 89–106%.	Ten injection of sample at 5.4 ppm, % RSD = 4.6%. Method precision tested with 8 preparations of one lot, % RSD = 6.4%.	Assessed over the range of 15–150 ng/mL (7 levels, duplicate injections per level), $r^2 = 0.9982$.	Absence of response noted in degraded bulk drug substance.	Minimum quantifiable limit = 3 ppm.	Sample solutions stable for 53 h at RT.	49
Methanesulfonic acid as a synthesis impurity with suppressed conductivity	Batch of drug spiked with MSA levels of 0.1–2.0% (by weight), duplicate injections at 7 levels, % recovery 98–107%.	Six preparations of bulk drug, % RSD = 0.51%. Day to day reproducibility of 2.9–4.0% RSD.	Assessed over a range of 1–20 ppm, $r^2 > 0.999$ (n = 10)	Absence of response noted in formulation placebos.	LOD = 0.3 ppm.	Assessed as day to day reproducibility	52 ′.
Oxalic acid, oxamic acid and oxamide as synthetic impurities by ion exclusion with UV detection	Examined by comparing calibration curves obtained in water matrix versus API. Less than 5% difference in slope, water versus API.	For six replicate preparations, % RSD = 9.3% at 2 ppm for oxalic acid; 4.1% at 1 ppm for oxamic acid and 3.4% at 0.6 ppm for oxamide.	r^2 = 0.9999 over range of 0.4–24 ppm for oxalic and oxalic acids; 0.1 to 6.2 ppm for oxamide. Six concentration, replicate injections.	Blank API matrix repetitively injected with no interfering peaks.	LOQ of 0.2 to 0.6 ppm.	Standards and samples stable for 24 h at RT. Method tested in two different laboratories with new and aged colu	57 umns.
Sulfate and sulfamate, decomposition products of topiramate, by suppressed conductivity	Examined by analyzing tablets spiked with the analytes over the range of 0.24–1.0 mol%. Mean recovery of 103%.	1.1% RSD (10 injections) for sulfamate and 1.5% RSD for sulfate at 0.5 mol%.	0.04 to 27 mol% for sulfamate, 0.1 to 30 mol% for sulfate, $r^2 > 0.999$ but systematic skew in calibration curve noted.	Formulation placebo (degraded and fresh) examined for absence of interfering peaks.	LOQ = 0.05 mol% for sulfamide, 0.1 mol% for sulfate.	Samples and standards stable fo at least 6 days at RT. Performed robustness assessn	65 r nent.
Trifluoroacetate in injections solutions and peptides	Recovery at 300 ng/mL was ~ 98% in several sample types.	Not reported.	r ² = 0.998 over range of 100–300 ng/mL.	Separation of TFA from other interfering anions (CL, PO4) in high excesses.	LOD = 100 ng/mL	Not reported.	88
Azide in protein samples	Recovery in 9 protein samples spiked with 0.08-0.80 mg/L was $95 \pm 8\%$.	%RSD of 6 replicate preparations was 5.7% RSD at 0.13 mg/L.	$r^2 = 0.999$ over range of 0.02–0.80 mg/L.	Separation between analyte and other common anions (e.g., Cl)	LOQ ranged from 0.02 to 0.06 mg/L	Robustness assesse by considering imp of small changes in operating conditio Standards stable for 295 h at RT, sampl for 46 h.	ed 89 pact n ns. pr les
Monoethylsulfate in Indinavir drug substance	Recovery over range of 250–600 µg/g ranged from 94–100%.	Injection and method precision < 5% RSD at 1000 ng/mL.	r ² = 0.9997 over range of 75–1200 ng/mL.	No interferences in the matrix blank.	LOQ = 75 ng/mL	Precision using 2 analysts and systems was < 5% RSD. Samples stable for 22 h at RT.	90
<i>N</i> -methylpyrrolodine in cefepime hydrochloride	Recovery in samples spiked with 0.3% NMP, ranged from 99–101%.	Triplicate sample preparations and analyses, %RSD = 1.2%. Injection precision, n = 6, RSD = 1.0%	r ² = 0.9990 over range of 5–50 μg/mL.	No interferences from matrix blank and from mixed cation solutions containing common cations and amines.	LOD = 0.15 μg/mL; LOQ = 0.4 μg/mL	Method optimization discussed	92
Azide in Irbesartan	Recovery in samples spiked with 5 µg/L and 30 µg/L; recoveries ranged from 99–104%.	%RSD of triplicate preparations = 3.9% . Injection precision, n = 6, = $4.0%$.	$r^2 = 0.9990$ over range of 5–100 µg/L.	No interferences from matrix blank and from mixed anion solution containing common inorganic anions.	LOD = 2 µg/L; LOQ = 6 µg/L	Robustness assesse by considering the impact of small changes in operating conditio Samples stable for 40 h at RT.	•d 93 ns.

Table VI C2. Examples of Validation Data For Quantitative Ion Chromatography Methods									
		Pe	erformance Parameters						
Application	Accuracy	Precision	Linearity	Specificity	LOQ/LOD	Ruggedness	Ref.		
D. Process Streams. Tetrabutylammonium bromide in Levetiracetam	Recovery in samples spiked with 0.1 µg/mL and 0.2 µgm/L; recoveries ranged from 98–102%.	%RSD of triplicate preparations < 1%.	$r^2 = 0.9990$ over range of 0.05–2.0 µg/mL.	No interferences from matrix blank and from mixed cation solutions containing common cations and aliphatic amines.	LOD = 39 ng (1.6 µg/g); LOQ = 120 ng (4.8 µg/g) 36 h at RT.	Separation optimization discussed. Sample solutions stable for	94		
Formic acid in ceftazidime	Provided in the literature	Provided in the literature	r ² > 0.98 over range of 0.25–25 μg/mL.	Provided in the literature	Provided in the literature	Not provided	95		
Inorganic cations in culture media by suppressed conductivity	Spike recoveries determined in chemically defined and complex media formulations.	Inter-day $(n = 6)$ and intra-day $(n = 12)$ precision assessed at concentrations ranging from 0.5 to 50 ppm. At > 1 ppm, inter-day %RSD < 1%, intra-day < 2%.	r ² > 0.9999 using polynomial model, 0.5 to 25 ppm for Na and K, 1 to 50 ppm for ammonium, Ca, Mg.	Specificity considered from a theoretical perspective based on the separation and detection methods.	LOD 0.5 to 1 ppm.	Assessed via intra-day precision.	59		
Hydroxylamine in waste streams by PAD	Mean recoveries of analyte spiked into waste water of 69.4% at 0.05 ppm and 93.3% at 0.5 ppm.	Triplicate injections at 0.05 ppm and 0.5 ppm had %RSD of 2.8% and 1.5%.	$r^2 = 0.999$ over range of 0.01 to 2.0 ppm.	Examined versus a mixture of <i>n</i> -methylhydroxy- amine analogs at 1 ppm.	LOQ = 0.015 ppm.	Standards stable for 12 h at RT.	63		
Chloride, nitrate, sulfate in pharmacopoeial grades of water with suppressed conductivity	Recovery in solutions at 75%, 100%, and 125% of nominal standard concentration. Mean accuracy = 105.1% for Cl; 104.5% for nitrate; 105.3% for sulfate.	Method Repeatability assessed by six injections on one day at the specification limit. %RSD = 5.0% for Cl, 3.3% for nitrate, 0.7% for sulfate. Method reproducibility assessed by duplicate injections on six different days by different analysts. % RSD for Cl = 12.4%, 7.8% for nitrate, 4.0% for sulfate.	Duplicate injections for 5 standards over range of 25–150% of the pharmacopoeial limit (0.1 ppm Cl, 0.2 ppm nitrate, 1 ppm sulfate); r2 > 0.99.	Tested against other common inorganic anions.	LOQ = 0.05 ppm, Cl; 0.004 ppm, nitrate; 0.04 ppm sulfate.	Standards and samples stable for > 7 days at RT. See method reproducibility.	64		
Ammonium, magnesium, calcium in pharmacopoeial grades of water with suppressed conductivity	Recovery in solutions at 75%, 100%, and 125% of nominal standard concentration. Mean accuracy = 97.9% for ammonium; 98.5% for magnesium; 98.4% for sulfate.	Method Repeatability assessed by six injections on one day at the specification limit. %RSD = 2.7% for ammonium, 1.7% for magnesium, 0.4% for calcium. Method reproducibility assessed by duplicate injections on six different days by different analysts. % RSD for ammonium = 5.4%, 1.7% for magnesium, 2.6% for calcium.	Duplicate injections for 5 standards over range of 25–150% of the pharmacopoeial limit (0.2 ppm ammonium, 1.0 ppm magnesium, 2 ppm calcium); $r^2 > 0.99$.	Tested against other common inorganic cations.	LOQ = 0.02 ppm, ammonium; 0.25 ppm, magnesium; 0.35 ppm, calcium.	Standards and samples stable for > 7 days at RT. See method reproducibility.	64		
Measurement of trace amounts of hydroxylamine in waste streams	Recovery samples prepared by spiking actual process effluent with 0.05 µg/mL and 0.5 µg/mL. Recovery at 0.05 µg/mL = 69%; recovery at 0.5 µg/mL = 93%.	Injection to injection precision (n = 3) at 0.05 μ g/mL = 2.8% RSD; at 0.5 μ g/mL = 1.5% RSD.	r ² = 0.9988 over the range of 0.1–2.0 μg/mL.	Not reported.	LOD = 0.002 μg/mL; LOQ = 0.05 μg/mL	Method optimization (especially detecto waveform) is discussed.	96 r		
Measurement of residual CIP-100 detergent (EDTA as the target analyte) in cleaning validation	In Method #1, swabs spiked with CIP were extracted in water. In Method #2, metal plates were spiked with CIP-containing solutions. The plates were then swabbed and the CIP recovered by water extraction of the swab. Method #1 recoveries averaged 101%. Method #2 recoveries ranged from 63% to 72%.	Injection to injection precision ($n = 3$) was % RSD ~ 2.2%. Intermediate precision, multiple determinations by one analyst on multiple days and multiple analysts on a single day were on the order of 2.8% RSD.	r ² = 0.99999 over the range of 1.3–21 mg/L.	Not reported.	LOD = 0.13 mg/L; LOQ = 0.39 mg/L.	See Intermediate precision.	97		